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SUMMARY

This paper describes a modern free-surface capturing strategy implemented in an unstructured �nite-
volume viscous �ow solver that can handle moving grids composed of arbitrary-shaped control volumes.
An adaptive mesh strategy is fully integrated in the code making it a single tool for dynamically
maintaining a prescribed density of grid points around the steady or unsteady interface between air
and water. The whole adaptive procedure is described in detail. The e�ciency of the overall approach
is examined on two- and three-dimensional hydrodynamic applications. The adaptive strategy achieves
interesting gains in terms of computational and human e�orts compared to single-mesh computations.
Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: free-surface �ow; adaptive method; unstructured mesh; three-dimensional hull

1. INTRODUCTION

The use of computational �uid dynamics (CFD) tools for predicting the powering performance
of ships remains challenging because of the numerous physical di�culties which characterize
the �ow around a real ship. Among the hard points which have to be solved to get a reliable
simulation of ship �ow, one can list, without being exhaustive, the accurate simulation of
ship stern �ows which is highly dependent on turbulence modelling, the modelization of the
hull=propeller coupling and the simulation of the free-surface deformation. On the one hand,
one must notice that the accuracy of CFD tools for predicting crucial global quantities like
resistance and self-propulsion factor is still limited. On the other hand, CFD is complementary
to towing tank tests because it provides a large amount of detailed informations on the �ow
which helps the designer to improve the performance of a new ship.
It has been observed during the last Gothenburg 2000 workshop [1] that the free-surface

capturing methodology was more and more popular among the CFD developers dealing with
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786 A. HAY AND M. VISONNEAU

viscous naval hydrodynamics. This increasing interest is due to the fact that this approach
is more robust than those based on a free-surface �tting methodology since no regridding is
necessary and the numerical wave-breaking phenomenon, which may occur during the initial-
ization period, is perfectly tolerated. When discretization schemes with compressive property
are used to discretize the concentration transport equation, one can ensure that the density dis-
continuity between air and water is captured on three to �ve control volumes [2, 3]. However,
if the discontinuity occurs in a region where there are not enough grid points, the free-surface
elevation is dramatically attenuated, making the free-surface capturing strategy far less ac-
curate (and far more expensive) than the classical algorithms based on free-surface �tting.
Therefore, the almost perfect numerical strategy should integrate a coupling between a free-
surface capturing approach and an automatic local adaptive mesh re�nement and coarsening
methodology in order to maintain dynamically a prescribed density of grid points around the
steady or unsteady interface between air and water.
The present study deals with such a strategy to emphasize its ability to precisely capture

the free-surface discontinuity for a reduced computational and human e�ort. To the authors’s
knowledge, such an approach has never been developed nor studied for hydrodynamic ap-
plications. Section 2 �rst presents the computational techniques used to enable the treatment
of hydrodynamic applications. It describes the incompressible �ow code which solves the
unsteady Reynolds-averaged Navier–Stokes equations (URANS) on unstructured grids with a
�nite-volume formulation that naturally handles arbitrary-shaped control volumes. This feature
enables �exible grid adaptation as the mesh can easily be re�ned but also coarsened by ag-
glomeration of control volumes with no need for particular treatment of adapted cells [4, 5].
Also presented is the free-surface capturing method implemented with its speci�c discretization
schemes that are required to get an accurate description of a density discontinuity. Section 3
describes the local adaptive mesh procedure which is designed in the framework of unstruc-
tured grids. The adaptive process is made dynamic and low CPU time consuming by the use
of an adequate data structure [4]. The adaptive procedure is entirely included in the �ow solver
making it a complete automatic single tool for computing hydrodynamic �ows. It is �rst ap-
plied, in Section 4, to the computation of the free-surface elevation behind a two-dimensional
fully submerged hydrofoil moving horizontally at constant speed and angle of attack. Then,
the Rayleigh–Taylor instability problem is examined. The main parameters of the adaptive
procedure are studied for determining their in�uences on the overall accuracy of the pro-
posed methodology. Finally, the three-dimensional simulation of the free-surface �ow around
a Wigley hull is presented. The advantages of the global approach are demonstrated in terms
of accuracy, optimal use of discretization points and user-friendliness.

2. COMPUTATIONAL APPROACH

2.1. Presentation of the �ow solver

The ISIS �ow solver, developed by the EMN (Equipe de Mod�elisation Num�erique i.e. CFD
Department of the Fluid Mechanics Laboratory), uses the incompressible URANS. The solver
is based on the �nite-volume method to build the spatial discretization of the transport equa-
tions. The face-based method is generalized to unstructured meshes for which non-overlapping
control volumes are bounded by an arbitrary number of constitutive faces. The velocity �eld is
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COMPUTATION OF FREE-SURFACE FLOWS WITH LOCAL MESH ADAPTATION 787

obtained from the momentum conservation equations and the pressure �eld is extracted from
the mass conservation constraint, or continuity equation, transformed into a pressure-equation.
In the case of turbulent �ows, additional transport equations for modelled variables are

solved. They are discretized and solved using the same principles as for the momentum
equations. Several near-wall low-Reynolds number turbulence models, ranging from the one-
equation Spalart–Allmaras model [6], two-equation k–! closures [7], to a full-stress trans-
port Rij–! model [8], are implemented in the �ow solver to take into account the turbulence
phenomena.
Incompressible and non-miscible �ow phases are modelized through the use of conservation

equations for each volume fraction (or concentration) ci of each phase i.

2.2. Conservation equations

The �ow solver can deal with multi-phase �ows and moving grids. Considering incompress-
ible �ow of viscous �uid under isothermal conditions, mass, momentum and volume frac-
tion conservation equations can be written as follows (using the generalized form of Gauss’
theorem):

@
@t

∫
V
� dV +

∫
S
�(U −Ud) · n dS=0 (1a)

@
@t

∫
V
�U dV +

∫
S
�U(U −Ud) · n dS=

∫
V
(�g− ∇p) dV +

∫
S
(T+ Tt) · n dS (1b)

@
@t

∫
V
ci dV +

∫
S
ci(U −Ud) · n dS=0 (1c)

where V is the domain of interest (i.e. a control volume) bounded by the closed surface S
moving at the velocity Ud with a unit normal vector n directed outward. U and p represent,
respectively, the velocity and the pressure. T and Tt refer to the viscous and Reynolds stress
tensors, whereas g is the gravity vector. While Tt is determined according to the turbulence
model used, T follows the classical relation of newtonian �uid for incompressible �ows.
The e�ective �ow physical properties (viscosity � and density �) are obtained from the

phase physical properties (�i and �i) by the following constitutive relations:

�=
∑
i
ci�i; �=

∑
i
ci�i;

∑
i
ci=1 (2)

When the grid is moving, the so-called space conservation law must also be satis�ed:

@
@t

∫
V
dV −

∫
S
Ud · n dS=0 (3)

2.3. Discretization techniques

2.3.1. Spatial discretization. All the �ow variables are stored at the geometric centres of the
arbitrary-shaped cells. Surface and volume integrals are evaluated according to second-order
accurate approximations by using the values of integrand that prevail at the centre of the
face f, or cell C, and neighbouring cells. The various �uxes appearing in the discretized
equations are built using centred and=or upwind schemes. For example, the convective �uxes
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788 A. HAY AND M. VISONNEAU

are obtained by the hybrid di�erencing scheme (HDS) which is a combination of the upwind
di�erencing scheme (UDS) and the centred di�erencing scheme (CDS). Unlike the practical
approach [9, 10] where the CDS=UDS blending is �xed to a global blending factor for all the
faces of the mesh, the HDS results from a local blending factor based on the signed Peclet
number associated to the face.
Besides, a pressure equation is obtained in the spirit of the Rhie and Chow [11] procedure.

Momentum and pressure equations are solved in a segregated way like in the well-known
SIMPLE coupling algorithm.

2.3.2. Discretization schemes for the concentration transport equation. Except for the con-
vection terms and volumetric mass �uxes, interfacial quantities qf are rebuilt linearly from
the cell-centred quantities and their available cell-centred gradients. Special attention has to be
paid to face reconstructions of the volume fraction ci. The challenge posed by the discretiza-
tion of the transport equation for the concentration is the accurate modeling of a contact
discontinuity, i.e. the free-surface. In order to ensure face bounded reconstructions and to
avoid unrealistic oscillations, the search for an acceptable compromise between accuracy and
boundedness of the concentration (06 ci6 1) is a key point [12, 13]. Moreover, the method
must also preserve the sharpness of the interface through the transport equation (1c).
These requirements are ful�lled by the inter-gamma di�erencing scheme (IGDS) [14] which

introduces downwind di�erencing since compressive characteristics are required for an accu-
rate interface capturing. Thanks to a normalized variable diagram (NVD) analysis [15], this
scheme enforces local monotonicity and the convection boundedness criterium (CBC) [16].
The main disadvantage of the IGDS scheme is a Courant number limitation: Co¡0:3 in
multidimensional cases, known as the Courant–Friedrich–Levy (CFL) condition. The Courant
number of any face is de�ned as follows: Co=�tF=V where F is the total (positive) veloc-
ity �ux through the considered face, V is the volume of the upwind cell and �t is the global
time step of the temporal discretization. Therefore, the CFL condition requires the discretized
time step not to be too large.
It has been shown that the role played by the compressive property of the IGDS is funda-

mental to get a reliable simulation of the free-surface [3].

2.3.3. Temporal discretization. The temporal discretization is based on a three-steps upwind
discretization which is second-order accurate. The convection and di�usion terms are treated
implicitly. When computing �ows with di�erent immiscible phases, the global time step of
the discretization has to be de�ned in agreement with the Courant number limitation of the
discretization scheme for the concentration equation as explained previously. This issue will
be addressed when applications are considered in Section 4.

3. ADAPTIVE TECHNIQUES

As indicated before, a free-surface capturing methodology is based on the transport of a con-
tact discontinuity. Although the compressive discretization schemes described above guarantee
an interface captured over three to �ve cells, it is crucial to keep as small as possible the
characteristic length of the cells on either side of the interface to avoid too much a nu-
merical smearing of the discontinuity. Clearly, an automatic local adaptive mesh procedure
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(h-re�nement), based on successive re�nement and unre�nement steps, is well suited to fol-
low the temporal evolution of the interface and to maintain a �ne computational grid around
it. Moreover, an automatic grid adaptation process frees the user from a tedious task: the
generation of a mesh suited everywhere to the unknown interface position since one can start
from a uniform grid which will be automatically re�ned around the interface.
For being e�cient, the local adaptive procedure has to ful�ll some requirements that can

be �gured out a priori. First and foremost, the methodology must be able to handle unstruc-
tured grids since such topologies are now well-known to facilitate (and sometimes to make
possible) the treatment of real hydrodynamic simulations on complex geometries. Secondly,
when unsteady �ow are considered, the free-surface may be submitted to rapid variations in
time so that mesh adaptation may be required very often during numerical simulations for
the current grid to �t the discontinuity. Such a constraint clearly points out the need for local
mesh adaptation rather than adaptive mesh generation where each adaptation step corresponds
to an automatic global mesh generation [4]. Moreover, in order to preserve the CPU time cost
of the local grid adaptation process to its minimum, the adaptive procedure should be based
on a data structure enabling dynamic grid alterations. Lastly, a mapping routine has to be part
of the whole adaptation step to interpolate the solution computed on the last considered grid
to the new adapted one for the computation to be continuous.
The remainder of this section is devoted to the presentation of the developed adaptive

techniques and their main characteristics and possibilities.

3.1. Data structure

For the mesh adaptation process to be �exible, quick and easy to implement, a suitable data
structure is required. The present local mesh adaptation procedure is based on the notion of
relationship between the successive generations of elements of the grids. Connectivities
of relationship are considered for both the control volume type of element and the face type of
element. They are presented here only for the control volumes but similar notions applied to
the faces of the grids. The relationships introduced between the cells lead to a natural vocab-
ulary of family, father, son and brother as illustrated in Figure 1 (either for two-dimensional
control volumes or three-dimensional faces). The initial mesh is composed of the elements of
generation 0 and a �rst re�nement step leads to the creation of elements of generation 1. A
re�ned control volume becomes a father and is split into several sons that share a brotherly
relationship. And, the father and its sons form a family. Further re�nement step will induce
elements of generation 2 and so on. It should be emphasized that this structure does not reduce
the generality of the grid alteration since it does not take into account how the elements are
re�ned. Besides, negative generations can exist due to the unre�nement by agglomeration that
coarsen the initial grids (see Section 3.2). It should be also pointed out that all the elements
of the successive generations are kept in memory (they are only erased by unre�nement) but
the additional memory cost is reduced since only local adaptation is performed.
Such a data structure permits to address several problems at once. First, the unre�nement of

a family (thus of a previously re�ned cell) becomes straightforward since it corresponds to the
recovery of its father (and also the destruction of its sons). Thus, the re�nement=unre�nement
process becomes very dynamic and quick to achieve. Secondly, it permits to easily and exactly
recover the initial mesh if re�nement is no longer necessary in an area of the computational
grid as it is the case for unsteady problems.
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Generation 0

Generation 1

Generation 2
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GENERATION 2

GENERATION 0

son

father brother

Figure 1. Relationship between the di�erent generations of elements.

3.2. Grid alteration

During the re�nement process, each control volume to be re�ned is split into several smaller
ones of the same topology. Thus, the topology of elements is kept unchanged and only their
sizes are adapted. Doing so, the initial desired local mesh quality is preserved everywhere
during all the simulation. For two-dimensional grids, as illustrated in Figure 2, the re�nement
process can occur with a possible directional sensitivity for �ows with simple features. For
three-dimensional meshes, only isotropic re�nement is possible and leads to the cell divisions
presented in Figure 3. However, one may underline that altered grids do not require any
particular treatment in the �ow solver. As a matter of fact, a non-re�ned neighbour of a
re�ned cell presents a so-called hanging-node which is accounted for naturally by our face-
based �nite-volume method: a face with a hanging-node is simply seen as several smaller
faces.
Besides, an original kind of grid alteration can also be performed based on agglomeration

algorithms [4]. It permits to proceed to coarsen the elements of generation 0 (i.e. elements
that have not been previously re�ned). The agglomeration algorithms permit to unre�ne the
selected parts of the initial grid by grouping neighbouring cells. The di�erent groups are then
merged into a bigger cell. The agglomeration can result from a fusion of a face or of a node
as illustrated in Figure 4. As shown, the resulting agglomerated cell is of no usual shape but
once again the face-based methodology is designed to deal with such peculiarities.
Finally, special treatments are necessary when re�ning a curved boundary surface since two

requirements have to be ful�lled when a new node is added on the surface of the body:

• the node must be placed on the exact geometry which should be described either ana-
lytically or by a CAD description readable by the �ow solver,

• for convex boundaries and high aspect ratio cells, the inclusion of a new node on the
surface of the body should not generate neighbouring cells with negative volumes.
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directionalisotropic

isotropicdirectional

Figure 2. Re�nement of two-dimensional volumes.

Figure 3. Isotropic re�nement of three-dimensional volumes.

To avoid the apparition of ill-conditionned near-wall cells, the grid is moved in accordance
with the discrete boundaries deformation by generalizing the mesh deformation tools already
included in the �ow solver and previously used for shape optimization studies. For two-
and three-dimensional cases, a spring analogy is employed to control the deformation of the
grid [17]. The association of lineal and torsional springs provides a powerful mesh deformation
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Figure 4. Examples of agglomerated cells.

Figure 5. Safety margin around the interface.

tool, which maintains the grid quality near the wall even for high deformations. However,
this technique is not described here since the applications considered in this study do not
require it.

3.3. Description of the procedure

The goal of the proposed adaptive procedure is to maintain a desired prescribed cell size
around the free-surface of the considered problem. Therefore, an indicator is required to lo-
calize in space the free-surface and is easy to derive using information from the volume
fraction ci. The considered indicator is proportional to the norm of the gradient of the con-
centration which is already computed during the calculation of the �ow. As the indicator
is derived using only quantities already computed, it is referred to as an explicit indicator.
However, a safety margin is also added around the detected zones as indicated in Figure 5.
The question of what should be the typical size of the safety margin immediately arises. But,
as no previous study of such a procedure for capturing free-surface �ows is available, the
answer is di�cult to formulate a priori. However, it is legitimate to consider that an accurate
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Figure 6. Adaptive unsteady procedure.

computation of the free-surface may demand that the �ow around the free-surface to be cor-
rectly computed which further require an adequately large margin. Therefore, the size of the
safety margin may drastically in�uence the accuracy of the captured free-surface. This issue
will be addressed in Section 4.1.
The adaptive procedure for unsteady computation is summarized in Figure 6. An adaptation

step is asked every N time steps during the temporal loop. This parameter has to be chosen
su�ciently small so that the adapted meshes can correctly follow the temporal evolution of
the interface. Actually, N is always �xed to a small value so that the need for adaptation is
checked very often. But, if no signi�cant adaptation is required, the computation is resumed.
Otherwise, the current mesh is modi�ed according to the explicit indicator. Doing so, the
parameter N has no longer any in�uence on the adaptive algorithm. Following the mesh
re�nement=unre�nement, a mapping procedure is called to interpolate the solutions computed
on the previous grid onto the new adapted mesh. The mapping operators are described in the
next section. However, the current interpolated �ow variables no longer satisfy the discrete
unsteady operator. Thus, it is mandatory to achieve a new convergence of the �ow residuals at
the current time step as shown in Figure 6. The CPU time overhead due to these added steps
in the temporal loop is part of the overall computational cost of any adaptive calculation.
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The typical cell size in the vicinity of the free-surface is controlled by the parameter
NGen which is the maximum number of generations allowed to be created. Thus, the local
characteristic length h of any part of the initial mesh can, at most, be reduced down to h=2NGen

in each direction. The higher the NGen is, the more accurate the free-surface capturing is
expected to be.

3.4. Mapping procedure

This section is devoted to the mapping procedure developed to interpolate any �ow variable �,
stored at the centres of the control volumes, from grid to grid. In the framework of the �nite-
volume methodology, the value �i at the centre xci of a cell i is the mean value of � over a
control volume:

�i=
1
Vi

∫
Vi
� dV (4)

where Vi is the volume of the cell i. Besides, a second-order accurate �nite-volume dis-
cretization is considered so that any �ow variable is assumed to vary linearly over the control
volume:

�(x)=�i + (∇�)i · (x − xci ) (5)

As explained previously, a re�ned cell is called a father and is composed of Nson smaller
cells. When the re�nement is performed, the mapping procedure has to interpolate � at all
the centres xcson. The interpolation is achieved locally according to Equation (5) and the known
value of � and its derivatives at the centre of the father cell:

�(xcson)=�son =�father + (∇�)father · (xcson − xcfather) (6)

And, when a family of sons is unre�ned, the mapping procedure has to interpolate � at the
centre xcfather of the father cell. The interpolation is achieved locally according to Equation (4)
and the known values of � at the centres of the son cells:

�father =
1

Vfather

∫
Vfather

� dV =
1

Vfather

∑
son

(∫
Vson
� dV

)
=

1
Vfather

∑
son
(Vson�son) (7)

The proposed mapping procedure is applied to any �ow variable � at any time step. As
explained previously, the current interpolated �ow variables no longer satisfy the discrete
unsteady operator. Therefore, a new convergence of the �ow residuals at the current time
step is achieved. As a result, the mapped quantities at the current time step are only usefull
for initializing the new iterative solution procedure. However, the discretization of the terms
involving a temporal derivative requires the values of � at the two previous time steps (see
Section 2.3). These values are computed on the new adapted grid using the proposed map-
ping procedure. Thus, a small error is introduced which would be very di�cult to evaluate.
However, this methodology has been shown to ensure the continuity in time of the computed
solutions and no signi�cant error has been observed so far.
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4. APPLICATIONS

4.1. Free-surface related to a submerged hydrofoil

4.1.1. Description of the problem. The free-surface deformation behind a two-dimensional
immersed hydrofoil is �rst considered in this section. Duncan [18] has performed an exten-
sive experimental study of breaking and non-breaking waves produced by a fully submerged
two-dimensional hydrofoil moving horizontally at constant speed and angle of attack. The
con�guration of the test case is shown in Figure 7. The hydrofoil has a NACA 0012 shape
with a chord of c=20:3 cm and the depth of submergence is �xed to h=23:6 cm. The an-
gle of attack is set to 5◦ and the foil speed is UNACA =0:8m s−1. The two considered �uids
are water and air with corresponding densities of �water = 998:1 kgm−3 and �air = 1:2 kgm−3.
Based on the chord of the hydrofoil, the Reynolds number (in water) is Re=1:62× 105 and
the Froude number is Fr=0:567 since the gravity is �xed to g=9:81m s−2. This experi-
mental set-up corresponds to a steady free-surface deformation without any wave breaking
phenomenon. A comparison between numerical results from a surface tracking method and
a surface capturing method has already been performed in Reference [19]. And, using the
surface tracking method, the shape of the submerged hydrofoil has also been optimized [20]
to minimize the free-surface elevation generated. Following these previous studies, the one-
equation model of Spalart–Allmaras, which includes a low Reynolds number formulation, is
used to modelize the turbulence. However, the present study is focused on capturing an ac-
curate free-surface elevation for the lowest computational and human costs using the adaptive
mesh re�nement=unre�nement strategy.
Similar to the experimental set-up, for all the computations reported, the speed of the hydro-

foil is progressively increased from zero to UNACA between t=0 s and t=Tf=5 s according
to the speed law de�ned by (8) and plotted in Figure 8. Unsteady simulations are performed
until steady states are reached. For all the transient waves produced as the foil starts from rest
to be evacuated, 15 s of simulations are always performed so that the submerged hydrofoil
runs a 10m distance during a computation which corresponds to almost 50 chords.

∀t¡Tf:U (t)= UNACA2
[
sin

(
�

(
t
Tf

− 1
2

))
+ 1

]
∀t ¿ Tf:U (t)=UNACA

(8)

x

y
h=0.236m

5˚

c=0.203m

g=9.81m/s²

NACA
U     =0.8m/s

Figure 7. Con�guration of the immersed hydrofoil.
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Figure 8. Imposed velocity of the hydrofoil.

Figure 9. Grid 0 in the vicinity of the hydrofoil.

The moving body is handled easily since the whole computational grid is submitted to the
same imposed displacement as the hydrofoil and moving grids are accounted for naturally
solving equations presented in Section 2.2.
The considered computational domain is illustrated in Figure 9 along with a typical mesh.

Hybrid grids are employed with a structured topology in a large band centred onto the interface
and an unstructured topology made of triangular elements elsewhere. The structured region
ensures, in the area of the free-surface, the presence of quadrangular elements which are
known to be better suited regarding the capturing methodology [19]. Triangle elements are
preferred in the far �eld and around the foil to reduce the number of points and to ease the
mesh generation process.
At the left, right and bottom limits of the computational domain, the �uid velocity and the

modi�ed turbulent kinetic viscosity of the Spalart–Allmaras turbulence model (�̃) are imposed
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to zero through a Dirichlet boundary condition. The volume fraction ci and the pressure are
submitted to a Neumann boundary condition which is an imposed zero gradient �ux. And,
at the upper section, the �uid velocity and �̃ are allowed to be evacuated using a Neumann
boundary condition. Furthermore, ci is imposed to its exact value in the pure air phase and
the pressure is �xed to zero which thus corresponds to the reference of pressure level. At the
wall of the hydrofoil, classical no-slip boundary conditions are employed [19, 20].
For all the computations reported, the time step used, in the second-order accurate discrete

scheme of the temporal terms involved, follows a similar time evolution than the imposed
velocity of the hydrofoil. The corresponding law of the time step is derived in such a way
that the Courant number is always slightly under the critical value of 0:3 in the vicinity of
the free-surface. Doing so, the discretization scheme (IGDS) for the concentration equation,
presented in Section 2.3, is in the best con�guration regarding its capturing capacities since
the CFL condition is fully respected. Furthermore, the time step is automatically adapted to
the current cell sizes of the grid.
It should also be noticed that, during each temporal loop, the non-linear=coupling loop

(see Figure 6) ends when the residual of each single equation is reduced by three orders of
magnitude.
First, a grid re�nement study has been performed based on single-grid computations (no

adaptation) using Grid 0–3 for which corresponding numbers of points are presented in
Table I. Between two consecutive grids, a systematic isotropic re�nement ratio of 2 is ob-
served in the structured part of the domains. In the unstructured area, a similar rule ap-
plies but can not be ensured everywhere for obvious reasons linked to grid generation. As a
consequence of the space re�nement ratio considered, the typical time step (calculated at each
step of the temporal loop according to a desired Courant number in the vicinity of the free-
surface) for each single-grid computation is successively divided by two. As an illustration,
Table I gives the time step used during the �nal constant speed part of the simulation for all
the computations.
The free-surface elevations computed on these unadapted grids are compared to the exper-

imental results of Duncan [18] in Figure 10. The quality of these results is similar to the
one observed in Reference [19]. However, the relative di�erence between the free-surface
elevations computed on the two �nest grids (Grids 2 and 3) is small so that either of the two
can be regarded as the mesh-independent solution. Thus, it will be considered as a reference
solution to be compared to adaptive solutions in what follows.

Table I. Informations on the performed computations.

Computations NCells �t (ms) TCPU (min)

Grid 0 5381 6 12
Grid 1 13 149 3 58
Grid 2 35 182 1.5 364
Grid 3 113 984 0.75 3001

NGen=1 6900 3 35

NGen=2 12 800 1.5 135
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Figure 10. Free-surface elevations computed on unadapted grids.

4.1.2. Adaptive computations. For all the adaptive computations performed, the starting grid
is always the coarsest one (Grid 0). Allowing a maximum of two generations of cells
(NGen=2) leads to adapted grids with the same local cell size in the vicinity of the in-
terface as on Grid 2. Similar features are observed between Grid 1 and the adapted grid
based on Grid 0 and a maximum of re�nement level of one. As an illustration, Figure 11
give a view of the considered meshes along with the typical free-surface computed on them.
On these �gures, the interface corresponds to values of the volume fraction ci between 0:01

and 0:99. It can be observed that the interface is di�used on typically three to four cells
as expected and that the developed procedure successfully adapts meshes to the free-surface
deformations computed. As explained, the typical local sizes in the vicinity of the discontinuity
for (c) and (d) are equal. Thus, the smearings of the interface are similar.
In these �gures, the safety margin applied has been set to M =0:03m on either side of the

discontinuity. However, as indicated in Section 3.3, the in�uence of the width of the safety
margin may be not negligible at all and its correct de�nition is di�cult to �gure out a priori.
Thus, four di�erent adaptive computations have been examined using four di�erent safety
margins that range from M =0 to 0.06m. The maximum number of generations allowed is
set to NGen=2. The resulting adapted grids are presented in Figure 12. It can be observed
that the biggest margin (M =0:06m) is very large compared to the amplitude of the waves
generated. On the other hand, with no margin at all (M =0m) the interface is located close to
the limits between two di�erent levels of re�nement. The free-surface elevations from single-
grid computations, using the starting mesh Grid 0 and reference mesh Grid 2, are compared
to the ones calculated from the four adaptive computations in Figure 13. Since values of the
volume fraction ci between 0 and 1 indicate the presence of a mixture, the value of 0:5 is
selected as a de�nition of the interface. This remark applies throughout the remainder of this
study. First and foremost, this �gure reveals that the interface is captured as accurately as on
Grid 2 using the present adaptive procedure even though the starting mesh Grid 0 leads to
a far less accurate solution and a far more smeared interface (see also Figure 11). Thus, the
developed methodology is shown to be relevant. However, the in�uence of the safety margin is
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(a)

(b)

(c)

(d)

Figure 11. Comparison of grids in the vicinity of the free-surface: (a) Grid 0—NGen=0;
(b) Grid0—NGen=1; (c) Grid 0—NGen=2; and (d) Grid 2—NGen=0.

almost negligible since all the adaptive solutions are of similar accuracy. Therefore, a small
margin is preferable to bigger ones since it reduces the number of computational points.
Therefore, the safety margin of M =0:015m is considered as optimum and informations for
this adaptive computation with NGen=2 are reported in Table I (also for NGen=1). The
computed adaptive solution has been shown to be as accurate as the solution calculated on
Grid 2 but the overall computational cost is approximately divided by a factor three.
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(a)

(b)

(c)

(d)

Figure 12. Adapted grids in the vicinity of the free-surface for di�erent margins: (a) M =0m;
(b) M =0:015m; (c) M =0:03m; and (d) M =0:06m.
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Figure 13. Comparison of free-surface elevations for di�erent margins.

4.2. Rayleigh–Taylor instability

4.2.1. Description of the problem. This section is devoted to the treatment of the Rayleigh–
Taylor instability problem using the proposed computational approach. When a heavy �uid
is superimposed over a light �uid in a gravitational �eld, the �uid interface is unstable. Any
perturbation of this interface tends to grow with time, producing the phenomenon known as
Rayleigh–Taylor instability. It has been studied theorically and numerically in
References [21–23]. The presently considered con�guration is the one proposed by Daly [22]
which is illustrated in Figure 14 and corresponds to a viscous case. At time t=0 s, the in-
terface is �at and coincides with y=0. From this initial con�guration, a perturbation of the
velocity �eld is supplied. Following Daly’s advice [22], the imposed perturbation is made
appropriate for an incompressible �ow calculation. As a consequence, a single wavelength
perturbation is introduced through the following velocity �eld:

U (x; y) =
�A�y
�

sin
(
2�x
�

)
(2H (y)− 1) exp

(−2�|y|
�

)

V (x; y) =
�A�y
�

cos
(
2�x
�

)
exp

(−2�|y|
�

)

where A is the amplitude of the perturbation, L= �=2 is the half wavelength of the perturbation
corresponding to the width of the domain (see Figure 14), �y is the initial mesh spacing in
the y direction and H is the Heavyside function de�ned as follows:

H (x)=
{
1 y¿0
0 y¡0

The parameters that fully de�ned the case studied and the imposed perturbation are presented
in Table II. The two �uids considered are not water and air but �ctitious �uids. However
only the rate of densities of �uids is relevant and is presently equal to 2.
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Figure 14. Initial con�guration of the Rayleigh–Taylor instability.

Table II. Parameters of the Rayleigh–Taylor instability.

�1=�2 Re Fr A′ (m s−1) �

2 100 1 10−3 2L

The Chandrasekhar’s linear theory [21] permits to theorically determine the evolution of
the free-surface at the early stage of the instability (time should be small enough for the
non-linear e�ects to be negligible). For viscous �uids and given � and Re, Chandrasekhar
has noticed that the temporal evolution of the free-surface follows a positive exponential law
which growth rate n is given by:

n=

√
2g�
�

(
�2 − �1
�2 + �1

)
(9)

The computational domain is depicted in Figure 14. On all the limits, slip wall boundary
conditions are applied as in References [22, 23]. And, for each computation reported, the
discretization time step used in the temporal loop (see Figure 6) is automatically de�ned by
the desired Courant number that controls the compressivity of the discretization scheme IGDS
presented in Section 2.3. That is, at the beginning of each temporal loop, the correct time
step is calculated, from the current variables and based on the grid cell sizes, for ensuring a
maximum Courant number of approximately 0:3 everywhere on the domain. Thus, whatever
is the density of grid points of the current mesh, the time step is always de�ned in a way
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that respects the accuracy of the capturing scheme. And the non-linear=coupling convergence
is reached (see Figure 6), at each step of the temporal loop, when the residual of each single
equation considered is reduced by three orders of magnitude.
Before considering adaptive computations, a mesh re�nement study has been performed

using single-mesh calculations. The grids used are uniform, structured and their number of
cells ranges from 520 to 133 120 as reported in Table III. The re�nement ratio between two
consecutive grids is 2. The calculated exponential growth rates using these uniform grids
converge to a practically mesh independent value (see Table III) which is slightly di�erent
from the linear theory of Chandrasekhar but in good agreement with it.

4.2.2. Adaptive computations. For all the adaptive computations reported, the starting grid
is always the coarsest uniform structured one with 520 cells. As demonstrated previously,
the safety margin has no in�uence so that its width is �xed to a small value that is applied
for all the adaptive calculations. Four adaptive computations have been performed with NGen
ranging from 1 to 4.
The resulting grids after 1 s of simulation are shown in Figures 15(a)–(d). In the vicinity

of the interface, the grid density of adapted grids is similar to one of the uniform grids
presented previously since they have a re�nement ratio of 2. As an example, the adapted grid
with NGen=3 can be related to the uniform structured grid 321× 105.
Figure 16 further give the temporal evolution of the computational grid for NGen=3.

The location of the interface can be easily seen in these �gures. The ability of the adaptive
procedure to follow the temporal evolution of the free-surface is clearly demonstrated here.
Besides, the capability of the whole numerical approach to compute wave breaking is also
illustrated since the interface rolls up, yielding the half-mushroom pattern typical of this
problem.
In the last �gure, at time t=2 s, it can be observed that there is still a thin layer of mixture

of �uid close to the bottom boundary of the computational domain instead of pure heavy �uid
phase (ci=1). Actually, the presence of the mixture (containing mostly the heavy �uid phase
0:95¡ci¡1) is due to the numerical treatment of the boundary condition. At this section, the
volume fraction is submitted to a zero gradient �ux condition (Neumann boundary condition)
which is implemented explicitly in the �ow solver. A delay in the volume fraction transport in

Table III. Informations on the performed computations.

NCells CPU time (s) n

Linear theory — — 4.95

Single-mesh 41× 14 520 159 6.97
computations 81× 27 2080 816 7.48

161× 53 8320 3188 4.70
321× 105 33 280 25 878 5.27
641× 209 133 120 82 260 5.14

Adaptive NGen=1 700–900 242 7.47
computations NGen=2 1000–1400 417 4.70

NGen=3 1600–2200 826 5.26
NGen=4 2700–3700 2625 5.14
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(d)(c)(b)(a)

Figure 15. Comparison of grids for di�erent values of NGen: (a) NGen=1; (b) NGen=2;
(c) NGen=3; and (d) NGen=4.

the vicinity of boundaries is yielded by this explicit treatment of the Neumann condition but
has little in�uence on the whole multi-phase �ow since ci is very close to its value in the pure
heavy �uid phase. However, since the explicit indicator, which drives the adaptive procedure,
is designed to identify the presence of mixture, re�nement of the grids is performed in this
part of the computational domain. The implicit treatment of the boundary condition should
tackle this issue and is in development stage at present.
Figure 17 provides a comparison of the location of the free-surface computed for di�erent

values of NGen after 1 s of simulation. It can be observed that the computed positions of the
interface converge when NGen is increased.
The computed growth rates of the interface n are now examined and compared in Table III.

As for the mesh-independent study, the growing rates computed from adaptive computations
converge to a value close to the one predicted by the analytical theory of Chandrasekhar.
Moreover, the computed value from each single adaptive computation is almost equal to the
value computed using the uniform grid that has the same grid density in the vicinity of
the interface. For example, the growth rate from the adaptive computation with NGen=3 is
equal to the one computed using the uniform grid 321× 105 so that these two calculations
have a similar accuracy. Thus, as reported in Table III, for a similar accuracy, the adaptive
procedure permits to signi�cantly reduce CPU times. These reductions range from a factor 3
to a factor 30 comparing the CPU times for, respectively, the single-mesh computation on the
�nest uniform grid (641× 209) and the adaptive computation with NGen=4.
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Figure 16. Temporal evolution of the computational grid (NGen=3).

4.3. Free-surface around a Wigley hull

4.3.1. Description of the problem. The treatment of a fully three-dimensional hydrodynamic
problem using the adaptive procedure is considered in the present section. The �ow around
the so-called Wigley ship has been studied experimentally in Reference [24] at model scale.
The Wigley hull has a shape which corresponds to a parabolic model de�ned as follows:

Y (X; Z)= ± B
2

[
1−

(
2X
Lref

)2] [
1−

(
Z
D

)2]
(10)
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Figure 17. Comparison of free-surface computed for di�erent values of NGen.

Table IV. Parameters of the �ow around the Wigley hull.

Parameter Dimensional value Adimensional value

Lref 4m 1
B 0.4m 0.1
D 0.25m 0.0625

Uref 1:81m s−1 1

g 9:81m s−2 11.973

where Lref is the total length of the hull, B is the maximum thickness of the hull and D
is the draft of the hull. This hull has been preferred to the more realistic one because its
analytical de�nition facilitates the inclusion of new grid points on the surface of the body
as explained in Section 3.2. Naturally, the two considered �uids are again water and air
which have the previously given densities. Previous studies have shown that the viscosity of
�uids can be neglected for this problem for a Froude number of Fr=0:289. Furthermore,
this experimental set-up corresponds to a steady free-surface deformation without any wave-
breaking phenomenon [24]. The problem is considered in its adimensional form and the
corresponding values of physical parameters are presented in Table IV. The adimensional
domain of computation is depicted in Figure 18. Only half of the geometry is modelized
since the plane [(X; Z) :Y=Lref = 0] including the boundaries of the hull is a symmetry plane.
At rest, the interface is located in the plane [(X; Y ) :Z=Lref = 0] and the bottom of the hull,
which reduces to a segment, is included in the plane [(X; Y ) :Z=Lref =D=Lref ].
At the in�ow and out�ow sections (planes [(Y; Z) :X=Lref = −2:5] and [(Y; Z) :X=Lref = 3:5],

respectively), at the bottom section ([(X; Y ) :Z=Lref = − 2]) and at the front section
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Figure 18. Global view of the computational domain.

([(X; Z) :Y=Lref = 2]), the �uid velocity and the volume fraction are imposed and the pres-
sure is submitted to a zero-gradient �ux condition. At the top section ([(X; Y ) :Z=Lref = 0:2]),
the pressure is imposed (which further de�ned the reference of pressure level) and the
�uid velocity and the volume fraction are both derived by a zero-gradient �ux condition.
At the last limit of the computational domain, boundary conditions of symmetry are ap-
plied to all the variables excepted at the wall of the Wigley ship where slip wall conditions
apply.
As for the hydrofoil test case, the velocity of the Wigley hull is progressively increased

from zero to Uref according to a speed law de�ned similar to (8). It avoids strong transient
e�ects with unphysical waves as it could be observed if an impulsive start was prescribed.
However, in order to get well converged results (a steady state is expected) and especially to
satisfy the wave propagation in the far �eld, it is mandatory to compute up to an adimensional
time of t=10.
Once again, the discretization time step used in the temporal loop is automatically de�ned

by the speed law followed by the ship, the desired Courant number and the mesh cell sizes.
And, at each step of the temporal loop, the non-linear=coupling convergence is achieved by
reducing the residual of each single equation considered by three orders of magnitude.
To evaluate the in�uence of the number of discretization points on the solution, a grid-

independent study has been carried out on three grids composed of hexahedric volumes.
Figure 19 gives an inside view of the typical grid close to the Wigley ship. The free-surface
is initially located at the middle of the �nest cells zone on the hull. The characteristics
of the three grids used for performing single-grid computations are described in Table V
with CPU time spent. The �nest grid has about 1.8M cells. The calculation on this grid has
been performed using a parallel approach on a multi-processor computer (see Section 5). The
outcomes of the single-mesh computations will be presented and analysed along with the ones
from adaptive computations for comparison. The solution on the �nest grid will be considered
as a reference solution.
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Figure 19. Inside view of a typical grid near the Wigley hull.

Table V. Characteristics of the computations of the
free-surface around the Wigley hull.

Computation NCells TCPU (h)

Coarse—NGen=0 64 000 5
Medium—NGen=0 306 000 77
Fine—NGen=0 1 800 000 960
Coarse—NGen=2 307 000 70

4.3.2. Adaptive computations. The coarsest grid presented previously, which has only 64 000
cells (i.e. 40 points in each direction), is the starting mesh for adaptive computations. It will
be systematically adapted according to the explicit indicator based on the gradient of the
concentration ci and presented in Section 3.3. However, to avoid the inclusion of points in
regions where the free-surface is hardly deformed, this criteria is activated only inside an area
around the hull as illustrated in Figure 20. It shows the typical grid point concentration near
the interface after two levels of adaptation. Figure 21 shows a transversal cut comparing the
�nest structured grid and the adapted grid with NGen=2 generations allowed. It should be
emphasized that the added nodes on the hull are correctly located according to the analytical
de�nition of the hull (Equation (10)). However, the quality of the adapted grids is preserved
without any special treatment since the slope of the hull is reduced and cells close to the
slip wall boundary are not too stretched. Therefore, the grid remeshing technique, presented
in Section 3.2, is useless for the present application. Besides, one can notice that the typical
grid cell size of the adapted mesh is still larger than the corresponding size of the �nest grid
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Figure 20. Global view of the region where the adaptation criteria is activated ([(X; Y ) :Z=Lref = 0]).

Figure 21. View of the structured and adapted grids ([(Y; Z) :X=Lref = 0]).

involved in single-mesh computations. But, an adaptive computation with three generations
of cell division is not a�ordable since it will require beyond the memory limit of the single-
processor computers available. Such a computation can only be performed with reasonable
CPU time cost by use of a suitable parallel strategy that is not yet coupled with the adaptive
procedure. This issue will be discussed later in Section 5. Figure 22 shows the skin meshes
of the hull on the coarse grid and the �ne grid that can be further compared to the adapted
meshes computed with, respectively, NGen=1 and 2. The coarse mesh (Figure 22(a)) has been
strongly re�ned in the vicinity of the free-surface by the adaptive process (see Figure 22(c)).
The results obtained from the adaptive computation with NGen=2 are now compared to the

ones obtained on (i) the �ne structured grid made of 1.8M cells, (ii) the medium-structured
grid having the same number of cells than the �nal adapted grid. The computational costs are
listed in Table V. Obviously, the number of cells of the adaptive grids is not �xed during the
whole calculation since the free-surface is moving. During the early stage of the computation,
the interface is hardly deformed and thus the number of grid points is lower than the one
given in Table V. This is why the adaptive computation has a lower CPU time that the single-
grid computation performed on the medium grid. However, it should be noted that computing
the error indicator, performing the adaptation of the grids and mapping the solutions have
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(a)

(b)

(c)

(d)
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Figure 22. Adapted and unadapted meshes along the waterline: (a) Coarse—NGen=0;
(b) Coarse—NGen=1; (c) Coarse—NGen=2; and (d) Fine—NGen=0.
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a negligible CPU cost regarding the whole adaptive calculation. Actually, the main cost of
the adaptive procedure comes from the requirement of performing a new convergence of the
solutions at the times of adaptation (see Section 3.3).
First, the elevations on the waterline calculated by the di�erent computations are considered

and plotted in Figure 23 along with the experiments from Reference [24]. It can be noticed
that the computed free-surface elevations are in good agreement with the experimental results.
However, the accuracy of the adapted solution is similar to the �ne grid prediction even though
the solution computed on the initial coarse grid is far less accurate. Actually, the free-surface
elevation computed on the medium grid is also less accurate than the adapted one compared
to the �ne grid solution.
A global view of computed free-surface elevations is now examined. The respective free-

surface elevations are shown in Figure 24. Although the solution obtained on the adapted
grid is not as accurate as the one provided on the �ne structured grid, the interface is well
captured since all the waves are visible although slightly attenuated. The in�uence of the right
positioning of grid points is illustrated by the solution obtained on the medium-structured
grid made of the same number of points as the adapted grid (roughly 300 000 cells), but
distributed according to the criteria used to build the structured meshes. The free-surface
elevation obtained on that medium-structured grid is obviously far too smeared. These results
show how the adaptive procedure permits to reach a more accurate solution for a similar
computational cost (see Table V).
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Figure 23. Free-surface elevation along the waterline for the di�erent grids.
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(a)

(b)

Figure 24. Comparisons of the free-surface elevations for di�erent computations: (a) Adaptive NGen=
2 (top) vs �ne structured grid (bottom); and (b) Adaptive NGen=2 (top) vs medium-structured grid

having the same number of points (bottom).

In order to assess more clearly this feature, Figures 25–27 show transversal wave pro�le
cuts for Y=Lref = 0:15, 0.30 and 0.45, respectively. Considering the �ne grid solution as a
reference, it can be observed that the adaptive wavecuts are always more accurate than the
ones computed using the medium grid. But, the adaptive solution, with the chosen number
of allowed generations, is not always as accurate as the �ne grid solution. As explained
previously, one more level of re�nement is not possible without a suitable parallelization
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Figure 25. Transversal wave pro�le cut for Y=Lref = 0:15.

X/L

Z
/L

0 0.25 0.5 0.75 1 1.25
-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

Coarse
Medium
Fine
Adaptive NGen=2

Figure 26. Transversal wave pro�le cut for Y=Lref = 0:30.

technique with dynamic load-balancing that may be di�cult to derive and implement (see
Section 5). Besides, looking at the starting grid of the adaptation process, one may fear
a certain lack of grid points away from the interface where no adaptation is performed.
Indeed, the adaptation procedure is concentrated on the free-surface. It thus permits to have
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Figure 27. Transversal wave pro�le cut for Y=Lref = 0:45.

a description of the discontinuity as accurate as desired using a more and more important
number of generations allowed (within the computer memory limit). But, this description of
the interface is for a given pressure �eld evaluation that may su�er from the lack of grid
points away from the interface. A careful investigation of this particular point is currently
underway. However, for a similar overall cost, the adaptive procedure permits to compute
more accurate solutions which is a very promising result.

5. CONCLUDING REMARKS AND FUTURE DEVELOPMENTS

This paper has described a modern free-surface capturing strategy implemented in an unstruc-
tured �nite-volume viscous �ow solver that can handle moving grids composed of arbitrary-
shaped control volumes. A mesh adaptation strategy has been fully integrated in the code
making it a single tool for performing adaptive computations. The data structure used, the
grid alterations performed, the explicit indicator and the adaptation procedure have been de-
tailed precisely.
The whole adaptive strategy, that only requires an initial grid from the user, has been

applied to three di�erent free-surface problems. First, the two-dimensional �ow over a sub-
merged hydrofoil has been considered. Then, the Rayleigh–Taylor instability problem has been
examined. It has been demonstrated that interesting gains in terms of CPU time have been
obtained using the adaptive strategy. These results have shown that an approach linking the
use of unstructured adaptive grids with several levels of local re�nement to a free-surface
capturing strategy is interesting in terms of robustness and accuracy.
Then, the three-dimensional �ow around the Wigley hull has been examined. The use of the

adaptive procedure has yielded very encouraging results. It has been shown that more accurate
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solutions can be computed for a �xed overall cost. But, the accuracy of the �ne grid solution
cannot be completely reproduced by the adaptive computations with the chosen number of
generations. Actually, three-dimensional computations require a substantial number of points
even with the use of a suitable mesh adaptation strategy. Thus, future developments will aim
at developing an e�cient parallelization with a dynamic load-balancing. Actually, the adaptive
procedure can be parallelized the same way as the �ow solver. But, ensuring a dynamic load-
balancing may be a more tedious task and this feature is mandatory for the parallelization
of the adaptive procedure to be e�cient. The ISIS code performs parallel computations using
the message passing interface (MPI) [25]. When single-grid calculations are considered, the
computational domain can be decomposed into a convenient number of equal-sized partitions.
Each partition is treated by an attached physical processor. Thus, the load distribution across
the processors of the parallel machine is naturally ensured which further leads to an e�cient
parallel processing. But, considering adaptive computations for which the number of grid
points is dynamically modi�ed, the load-balancing may no longer be respected. Indeed, since
the computational domain is locally adapted, one partition of the decomposed domain may
reach an important number of points when the other partitions are kept with no modi�cation.
Typical implementations of the MPI do not support this dynamic feature which is responsible
for the loss of e�ciency of the whole parallel process. However, the adaptive procedure can be
parallelized using adaptive MPI (AMPI), an adaptive implementation of MPI, which is better
suited for such applications. The basic idea behind AMPI is processor virtualization which
is a powerful technique that enables the runtime system to carry out intelligent dynamic
optimization like resource management [26]. The load is distributed over a large number
of virtual processors, independent of the number of physical processors, and the runtime
system is responsible for assigning virtual processors to physical processors. It has been
shown in Reference [27] that treating a programme as a collection of communicating objects,
measuring the execution time consumed by those objects at runtime, and achieving proper
load-balancing by automatically moving those objects from processor to processor allows the
implementation of e�cient load balancers. Using such a technique is thus well-suited for
h-adaptive computations that will no longer be limited in terms of maximum number of
generations allowed.
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